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Abstract: - Window-based elliptic curve multiplication algorithms are more attractive than non-window 
techniques if precomputation is allowed. Reducing the complexity of elliptic curve point multiplication of the 
form  , which is the dominant operation in elliptic curve cryptography schemes, will reduces the overall 
complexity of the cryptographic protocol. The wBD is a new window-based elliptic curve multiplication 
method. It is based on new recoding method called window big-digit (wBD). The wBD is a bidirectional 
method that can be calculated in both directions based on the amount of the available memory.The available 
memory is invested in an efficient way since wBD has little number of precomputed points compared to other 
window methods wich make it more suitable for limited storage devices.The BD recoding method requires only 
one pass to transform the exponent k from its binary representation to its wBD representation. Moreover, the 
wBDkeys has the lowest zero-run length among other window methods. Finally, the number of elliptic curve 
operations in addition to the execution timeof wBD method is measured. Consequently, the wBD is efficient as 
other window-based methods. 
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1 Introduction 
Elliptic curve operations may be improved by many 
techniques[1]. Finding a new recoding method 
which transforms the exponent k to k’ with less 
hamming weight is one of the techniques that may 
crucially affect the efficiency of an EC scheme.  
These recoding methods are classified into window 
and non-window methods. Window methods are 
considered a generalization of non-window methods 
[2-7].Window methods are used if it is allowed to 
store some precomputed values [8]. It is also of 
interest to have a left-to-right recoding method since 
it enhances the efficiency of computing kP due to 
the fact that no need to store the recoded exponent k. 
Figure 1, shows two recoding methods of the integer 
k; unsigned binary 
representation ,and 
unsigned window 
representation

 . The hamming weight is 
. The number of EC doublings relies on 

the length of the exponent, while the number of EC 
additions relies on . Hence, processing w 
digits at a time will reduce the number of EC 
additions with extra memory needed to store the set 
Dw. If only odd values of set Dw are used and zero 
runs are skipped, then the number of additions will 

be reduced. Moreover, if signed values are also 
used, the number of precomputationscan be reduced. 
The exponent k can be scanned left-to-right or right-
to-left. The former method is preferable for window 
EC multiplication methods since it can be combined 
with EC multiplication methods without storing the 
exponent k, i.e. left-to-right methods enable us to do 
recoding and multiplication simultaneously. 
 

k'm-1 … k'1 k'0 

kn-1 … k1 k0 …     kw-1 … k1 k0 

Figure 1Binary and Window Representation of an Integer 
key (k) 

Generally, there are two ways for applying window 
methods: the first one is fixed window method such 
as the m-ary method, which process w digits at a 
time without skipping any digit. The second one is 
applying a more dynamic technique over the 
recoded exponent which is sliding window method. 
[5]. Zero runs are skipped while applying the second 
window technique, therefore only odd window 
values will be precalculated and stored [9]. 
Moreover, using singed binary representation will 
reduce the number of precomputed elements. 
Since we are concerned in software implementation 
issues, the EC defined over prime fields is of our 
interest. Therefore, the elliptic curve parameters 
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concerns curves defined over prime fields. A 
Weierstrass equation is simplified in order to 
facilitate the usage of elliptic curve equation in 
elliptic curve cryptography. The following equation 
is defined over the prime field Fp with characteristic 
>3. 

 

Where and  

Let  and where . 
Then basic EC operations, addition and doubling, 
are defined as follows: 

 

 

. 

 

 
In 1990, Morain and Olivos[10] firstly suggested to 
apply the non-adjacent form (NAF) to construct the 
addition-subtraction chain for point multiplication 
[11]. Window method, over non-sparse optimal 
signed binary representation, was firstly proposed 
by Koyoma and Tsuruoka[3]. Miyaji et. al. proposed 
wNAF window method for fixed and random EC 
point [12]. Sliding window method over NAF and 
wNAF was also introduced by Solinas[2, 13]. The 
fractional window method was presented by [6] to 
use the available memory in more efficient way than 
the previous methods. Later on, some left-to-right 
window methods have been proposed by Okeyaet al. 
[5], Avanzi[14], Muir and Stinson [15], and by 
Khabbazian et al. [16]. Some properties of the 
proposed methods were proved in the previous.On 
the other hand, the minimality property of fractional 
window method was proved by Moller [17]. Some 
properties of non-sparse optimal singed binary 
representation and its window method were 
analyzed by Kong and Li [11]. Muir and Stinson 
showed that wNAF has a minimal number of 
nonzero digits [18]. 
Window-based methods require memory to store the 
precomputed points (windows). These methods can 
be classified according to two criteria: flexibility of 
memory usage and direction. Left-to-right recoding 
is preferred since it can be merged with the EC 
multiplication method. It is also considered memory 
efficient method since it requires only w digits to be 
known when applying the multiplication technique. 

The methods: m-ary, wMOF , MU, KH, Avanzi,  
and extended FW are left-to-right methods. While 
KTNS, wNAF, swNAF, FW, KLNS methods are 
considered right-to-left. Finally, memory flexible 
methods are those which can limit their number of 
precomputed points according to the available 
memory such as fractional and Khabbazian. 
 
2 Proposed Work 
Usually, a radix-2 representation of k is called 
window representation if  and the window 
values are in the digit set 

. A new window-based single scalar 
multiplication method over prime fields and using 
affine coordinates is proposed. It relies on BD 
recoding method, which is originallay based on 
ZOT-binary number system [19].Let 

 be the binary representation of 
an integer k. Then 

, is the 
window NAF representation of k. 

Algorithm 1: Window Big-Digit Recoding 
Input:  
Output: 

 
 

 
 

 

 

 
Return  

Algoirhtm 1 is used to convert a key into its wBD 
representation 

The length of big-
zero is equal to the big-zero digit length in addition 
to the previous big-digit length. This consideration 
helps in improving the window method and 
repeating doublings. 
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Figure 2 Big-digits Processing and Recognition 

The conversion from binary to window BD 
representation is described in Figure 2. A 
contiguous sequence of nonzero digits is converted 
to either big-one or big-two, while the contiguous 
sequence of zero digits is converted to big-zero. The 
hamming weight of ZOT-binary number system is 

  compared to  for binary ,  for NAF and  
for wNAF [20], where n is the bit-length of k. The 
wBD multiplication method is provided in 
Algorithm 2. 
 
Algorithm 2: Window BD Single Scalar EC  Point 
Multiplication 

Input: 
0,1,2, ≤  
Output:  
 

 

 
 

 
 

 

 
Return  

The average length of zero runs in binary, ZOT-
binary, NAF, or wNAFrecoded keys is computed 
using the formula with a key length of : 

 

 

. 

Whereas average length of zero runs for BD recoded 
keys is computed using the following formula: 

 

The set of precomputed windows is 

. Whereas the number of precomputed 
points are . Since the BD is a 
bidirectional recoding method, the memory required 
to store the recoded exponent is w whenever left-to-
right method used. The cost of wBD multiplication 
method is computed using the formula n

. Finally, only one pass is 
required to transform the exponent k from its binary 
format to its wBD formant. 

Table 2 lists window methods and the required 
memory for storing the exponent k in addition to the 
recoding direction and the number of passes 
required by an algorithm to convert the exponent k 
to its new format. Bidirectional methods in addition 
to left-to-right methods require less memory to store 
the recoded exponent than right-to-left methods. 
Number of passes means that the conversion 
requires two sub-conversions for the recoding 
process. For example if method A converts k to 
singed k’ next it converts singed k’ to window 
singed k’’ then this method requires two passes. As 
it can be seen from the table, the conversion of the 
exponent k from its binary representation to its wBD 
representation requires one pass which is considered 
one of the advantages of wBD method. Moreover, it 
is a bidirectional method which also does not store 
the whole recoded key and can be computed in any 
direction depending on the available amount of 
memory. 

 
Table 1 Window Methods Summary 

Method 
Year Reference Required memory Recoding direction n-Pass 

m-ary 1939 [4]  BI 1 

swNAF NA [8]  RTL 1 

KTNS 1993 [3]  RTL 2 

Processing direction 
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wNAF 1997 [13]  RTL 1 

wMOF 2004 [5]  BI 2 

FW 2002 [6], [17]  RTL 1 

KLNS 2005 [11]  RTL 2 

KH 2005 [16]  LTR 2 

MU 2005 [15]  LTR 1 

wBD 2012 [21]  BI 1 

 
The mathematical representation of kwBD in addition to other window methods is depicted in Table 3.  

Table 2 Mathematical Key Representation for Some Window Methods 

Method Representation 

m-ary  

swNAF  

KTNS  

wNAF  

wMOF  

FW  

KLNS  

KH  

where , and C is the maximum number of points that can be stored 

MU  

wBD  

 

3 Implementation 
Five recommended elliptic curves defined over 
prime fields published by the national institute of 
standards and technology (NIST) are used. The 
NIST recommended curves over prime fields are 

used in this study [22]. The prime modulus p is 
Mersenne or Mersenne-like prime [22].  
All NIST elliptic curves are defined with  
without much loss in generality. This choice yields 
faster point doublings in Jacobian coordinates 
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[22]and does not affect the results gained in this 
study.The value of factor h is 1 for NIST fields. The 
base point used in this study, , is given with 
each NIST recommended EC [23]. The parameters 
of these elliptic curves can be found in FIPS PUB 
186-3[23]. The algorithms used in this research are 
coded using C++ language, “Microsoft Visual C++ 

2008”. Besides, it is implemented using MIRACL 
cryptographic library [24] since it supports EC 
applications over prime fields. Several experiments, 
using two different PCs, have been conducted over 
hundreds of thousands of randomly chosen n bit 
keys. Computers’ specifications are summarized 
inTable 1.  

 

Table 3Computers’ Specifications 

System 
Information Operating System Processor Memory 

GB 

PC1 Windows XP Professional SP3 AMD Phenom(tm) 9650 Quad-Core Processor,  MMX,  
3DNow (4 CPUs), ~2.3GHz 3.6 

PC2 Windows XP Professional SP3 Pentium(R) Dual-Core CPU  T4200  @ 2.00GHz (2 
CPUs) 

3 
 

 
4 Results and Disscussion 
 
Table 4 represents the mathematical representation 
of the set of precomputed windows for some 

window methods. The set Dw for wBD method is 
formulated and shown in the table. 

 
Table 4PrecomputedPoints for Some Window Methods 

Method Precomputed windows set Dw Number of precomputed points  

m-ary   

swNAF  [8] 

KTNS  
  Modified by [11] to be 

 

wNAF   
wMOF   

FW where m is an odd integer such 
that  for   for  

KLNS   

KH  m where , and C is the maximum 
number of points that can be stored  

MU   

wBD 
 

 

 
The number of precomputed points has been 
calculated according Table 4 and the results are 
presented in Figure 3.  The figure shows the number 
of precomputed windows for wBD multiplication 
method. wBD method has the lowest number of 
precomputed points over various windows sizes. It 

slightly increase for larger window sizes. On the 
other hand the number of windows required by the 
m-ary window method is considered the maximum. 
An EC multiplication method with lower number of 
precomputed points is more suitable for limited 
memory devices. 
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Figure 3 Expected Number of Precomputed Points for Window Methods 

4.1 Zero-run Length 
The zero-run length, which is denoted by , 
represents the average length of the zero runs 
(contiguous sequence of zeros) between windows in 
the exponent k. Increasing zero-run length will 
speed up the window methods[3]. The expected 
zero-run length of the binary representation is 1 
[11], where it is 1.99 as measured in this study. The 

expected zero-run length of the NAF representation 
is 1.35 [11].Table 5 provides a summary of zero-run 
length for some investigated methods. The table 
includes mathematical representation and values of 
this metric. The values of wMOF and MU recoded 
keys are not determined in the literature. Whereas 
the formula of wBD method is phrased in the table 
and the value isexperimentally computed.  

 

Table 5 Length of Zero Runs for Window Recoded Keys 

Method Zero-run length  Value for  

m-ary Zero 0 

swNAF  1.36 

KTNS 1.42 1.42 

wNAF 2 [11] 2 

wMOF   

FW  where m is an odd integer such that  for  1.13 min 
1.88 max 

KLNS [11] 1.5 

KH C is the maximum number of points that can be stored  2 

MU   

wBD   
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The experimental values of zero-run lengths are 
computed using 100,000 randomly generated keys 
of size 256 bit and . Figure 4represents 
the values of this metric that have been calculated. 
As it can be seen from the figure,wBD method has 

the maximum length of zero runs. Thisresults is 
considered an advantage of wBD method since it 
affects the speed of window method positively as 
mentioned by Koyoma[3]. 

 

 
Figure 4 Length of Zero Runs in Window Recoded Keys 

 
4.2 Non-zero Density 
The non-zero density ( ) is the ratio of number 
of non-zero digits to the bit-length of the key, while 
the hamming weight is the number of non-
zero digits in the recoded exponent. Fewer number 
of non-zero digits results in fewer number of EC 
addition required by a multiplication method. Thus, 
decreasing the value of  or  will increase 
the efficiency of the EC multiplication method.Most 

of the gained values are measured theoretically; i.e. 
by evaluating equations. The non-zero density has 
two mathematical representations: and 

. In this section the former 
representation is used. Therefore, Table 6 shows the 
inverse of non-zero density ( ). 

 
Table 6 Inverse of Non-zero Density for Some Window Methods 

Method 1/Non-zero density  

m-ary w 

swNAF  

KTNS w + 1.42 

wNAF w + 1 

wMOF w + 1 

FW  
where m is an odd integer such that  for  

KLNS  

m-ary swNAF KTNS wNAF wMOF FWx FWn KLNS KH MU wBD

Zero-run length 0 1.35 1.46 2 1.99 1.13 1.88 1.5 1.98 1.87 2.13

0

0.5

1

1.5

2

2.5

Zero-run Length
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Or simply:  

KH  
, and C is the maximum number of points that can be stored  

MU  

wBD  

 
 
 
The inverse of non-zero density is evaluated for 

 using the equations in Table 6 and the results 
are shown inFigure 5. It seems that fractional 
window method with m set to maximum value has 
the lowest value which means that it is expected to 
have the lowest number of EC additions. On the 

other hand, if the number of memory locations is 
limited to 8 locations, i.e.  for FW method, 
the lowest values are for KLNS and KTNS, while 
the value of wBD requires experimental 
computation. Therefore, wBD method in addition to 
other methods is verified by experimental 
computations.  

 

 
Figure 5 Non-zero Density of Various Recoded Keys – Calculated 

 
An experiment is conducted for measuring the non-
zero density for some recoding methods. Each 
column on the figure represents an average of 
10,000 experiments. Randomly generated keys of 

224 bit have been examined. The results are 
presented in Figure 6. Almost the same results are 
achieved for non-zero density by experimental 
results. 

 

m-ary swNAF KTNS wNAF wMOF FWn FWx KLNS KH MU wBD
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Figure 6Non-zero Density of Various Recoded Keys – Experimental 

 
4.3 Cost of EC Multiplication Methods 
The cost of EC multiplication methods are measured 
in terms of number of EC operations (EC-
complexity) and in terms of execution time (time-
complexity).The number of EC operations required 
by each method whenever addition has the same 
cost as doubling is measured. One cannot compare 

method A with Method B over different fields. To 
draw a valid conclusion and to get correct results, 
both methods should be compared over the same 
field. Moreover, there is no need to mention the 
field size when measuring the EC-complexity since 
it does not affect the results when comparing the 
methods over the same field. 

 
Table 7 Cost of EC Window Methods - Mathematical Representation 

Method Cost of EC Multiplication 

m-ary  

swNAF  

KTNS 
 or simplified as follows 

 

wNAF  

wMOF  

FW  

KLNS 
 

Or simply  

KH  

MU  

wBD  

m-ary wMOF wNAF MU KH FWn FWx wBD swNAF
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Figure 7 Cost of EC Window Methods in Terms of EC Additions 

 
The number of EC operations required by each 
method, whenever addition has the same cost as 
doubling, is shown in Figure 7. These results are 
calculated using the formulas in Table 7. The 
window size that is used in this calculation is 5 

while the key size is 224 bit. The methods swNAF, 
KTNS, and KLNS have the lowest cost, while wBD 
was not the lowest cost method. 
 

 

 
Figure 8 Experimental EC-complexity for Various Window Methods 

 
Figure 8 shows the results of EC-complexity that 
has been experimentally computed. It represents the 
number of EC operations required by each method 
to compute the EC point multiplication kP. The 

experiments are conducted over the NIST prime 
field of size 521. Each point on the chart represents 
an average of 10,000 experiments with 224-bit key 
size.  

m-ary swNAF KTNS wNAF wMOF FWn FWx KLNS MU wBD
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Figure 9 Time-Complexity for Various Window-Based EC Multiplication Methods 

 
The time-complexity is measured and the results are 
shown in Figure 9. The execution time is measured 
over various windows sizes ( . The keys 
are randomly generated and stored in a text file in 
order not to include its generation time in the total 
execution time of the whole EC multiplication 
method. Each point represents the average of 10,000 
experiments for each of the evaluated multiplication 
methods. According to Figure 9, the wBD method is 
comparable with other EC multiplication methods 
when , while the time-complexity is slightly 
higher than the other methods for .  
 
5 Conclusion 
A window-basedbig-digit EC multiplication method 
is proposed (wBD). One of the advantages of wBD 
multiplication method is itsbidirectional property. 
Thus, it is more suitable for memory limited 
devices. It is a one pass algorithm which means that 
its recoding process is considered as one the fast 
recoding methods that requires only one pass to 
recode the exponent k. The wBD multiplication 
algorithm is compared to current state of art 
algorithms based on some defined metrics such as 
number of precomputed points, EC-complexity and 
time-complexity. 
Regarding precomputations, the precomputed 
window set is defined. It is found that the number of 
precomputed windows for wBD EC multiplication 
method is considered the lowest for various 
windows sizes. An EC multiplication method with 
lower number of precomputed points is more 

suitable for (devices equipped with small memory) 
limited memory devices. 
The zero-run length of wBD keys is defined and the 
equation is presented in Table 5. The wBDkeys has 
the lowest zero-run length among other window 
methods. On the other hand, the nonzero density 
formula is identified and presented in Table 6. It has 
been calculated for window methods with w = 5. 
The result of this metric shows that wBD has the 
highest value which means that it will has the 
highest number of EC additions.  Finally, the EC-
complexity and time-complexity costs of elliptic 
curve methods are measured. Even though wBD 
multiplication method has a memory advantage 
against other examined methods, it is comparable 
with other window methods in terms of EC-
complexity and time-complexity. Finally, Further 
improvement to wBD method may be achieved if 
more efforts are made to improve the efficiency of 
composite EC operations. 
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